Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dietrich Döpp, ${ }^{\text {a }}$ Claudia Kruse, ${ }^{\text {a }}$ Ulrich Flörke ${ }^{\text {b } *}$ and Gerald Henkel ${ }^{\text {b }}$
${ }^{\text {a }}$ Organische Chemie, Universität DuisburgEssen, D-47048 Duisburg, Germany, and ${ }^{\mathbf{b}}$ Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.080$
Data-to-parameter ratio $=10.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
rel-(1R,4R,9R)-1-Acetyl-9-(1-piperidinyl)-1,4-di-hydro-1,4-ethanonaphthalene-9-carbonitrile

The molecular structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$, shows elongated $\mathrm{C}-\mathrm{C}$ single bonds due to their thermal lability. The crystal packing shows molecules linked via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming infinite chains along [010].

Comment

Regioselective (head-to-tail) photocycloadditions of 2-aminopropenenitriles [as (II)] to triplet-excited 1-acetonaphthone (I) occur in both the [2+2] and [4+2] modes (Döpp, 2000). Usually the faster but photoreversible [2+2]-addition giving rise to cyclobuta[a]naphthalenes [as (III)] precedes the photo-irreversible (but thermally reversible) [4+2]-addition leading to (IV) (major product) and (V) (minor isomer, see scheme). In the [4+2]-cycloadduct rel-($1 R, 4 R, 9 R$)-(IV), the generally observed (Döpp, 2000) preferential endo orientation of the cyclic amino group is once more demonstrated. The percentage of any amino-exo-oriented C9-epimer of (IV), namely rel-($1 R, 4 R, 9 S)-(\mathrm{V})$, never exceeds 6% of the total yield of [4+2]-adducts (Döpp et al., 1994a,b, Döpp, 2000; Pies, 1988).

(V)

Received 26 July 2006
Accepted 14 August 2006

都

The molecular structure of (IV) (Fig. 1) is related to that of VAKBAK (Döpp et al., 1989; refcode in the Cambridge Structural Database; MOGUL, Version 1.0; Allen, 2002) with tert-butylthio instead of the piperidinyl group, showing similar geometric features. The slight elongation of the highly restricted C7-C8 bond $[1.5777$ (19) A $]$ in (IV) has also been observed in VAKBAK and agrees well with the thermal lability of this bond, e.g. in the thermal retro-Diels-Alder reaction of compound (IV) (Kruse, 2001). The orientation of

Figure 1
The molecular structure of (IV). Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
Crystal packing, viewed along [100], with the intermolecular hydrogenbonding pattern indicated by dashed lines. H atoms not involved have been omitted.
the piperidine ring is nearly perpendicular to the aromatic $\mathrm{C} 1-$ C6 plane. The three dihedral angles within the ethanonaphthalene unit are $56.00(7), 61.0(1)$ and $62.77(6)^{\circ}$. The methoxy group is almost coplanar with $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$; the relevant torsion angle $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 13-\mathrm{O} 1$ measures 18.6 (2) ${ }^{\circ}$. The crystal packing (Fig. 2) shows a prominent intermolecular hydrogen bond $\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1\left(-x, y+\frac{1}{2},-z+\frac{1}{2}\right)$, with
$\mathrm{H} \cdots \mathrm{O}=2.48 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=163^{\circ}$ that gives rise to infinite chains of molecules along [010].

Experimental

A solution containing 17.0 mmol each of 1-acetonaphthone [(I); 2.890 g] and 2-(1-piperidinyl)propenenitrile [(II); 2.312 g] in 170 ml of cyclohexane was irradiated with a 125 W Philips HPK high pressure mercury lamp through a water-cooled immersion sleeve ($\lambda=$ 280 nm) with stirring and continuous argon purging to achieve 42% conversions after 8 h of irradiation. The oily residue resulting from concentration was vigorously stirred with hexane under ice cooling to precipitate all photoadducts while residual starting materials remained dissolved in the mother liquor. The precipitate was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and repeatedly crystallized from ethyl acetate/hexane (1:1) with cooling (ice/salt bath) to recover the main photoproduct (IV) (Kruse, 2001).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.215 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.59 \times 0.22 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=306.40$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.869$ (2) £
$b=10.552$ (2) \AA
$c=17.902(4) \AA$
$V=1675.4$ (6) \AA^{3}

Data collection

Siemens P4 rotating-anode diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.961, T_{\text {max }}=0.981$
3963 measured reflections
2103 independent reflections
1923 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.0^{\circ}$
3 standard reflections every 100 reflections intensity decay: $<0.01 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.02$
2103 reflections
209 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.038 P)^{2}\right. \\
& +0.3818 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.22 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.045 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

N1-C8	$1.4739(18)$	C8-C9	$1.565(2)$
C1-C10	$1.5385(19)$	C9-C10	$1.5623(19)$
C6-C7	$1.5158(19)$	C10-C19	$1.525(2)$
C7-C12	$1.516(2)$	C10-C11	$1.525(2)$
C7-C8	$1.5777(19)$	C11-C12	$1.322(2)$
C8-C18	$1.503(2)$		
C6-C7-C12	$108.42(11)$	C10-C $9-\mathrm{C} 8$	$110.66(11)$
C6-C7-C8	$106.49(11)$	C19-C10-C11	$115.09(12)$
C12-C7-C8	$105.35(11)$	C19-C10-C1	$110.12(11)$
N1-C8-C18	$110.12(12)$	C11-C10-C1	$107.25(11)$
N1-C8-C9	$109.95(11)$	C19-C10-C9	$111.91(12)$
C18-C8-C9	$109.70(12)$	C11-C10-C9	$106.96(11)$
N1-C8-C7	$112.40(11)$	C1-C10-C9	$104.91(11)$
C18-C8-C7	$107.34(11)$	C12-C11-C10	$113.86(13)$
C9-C8-C7	$107.25(11)$	C11-C12-C7	$115.28(13)$

organic papers

H atoms were located in difference Fourier maps and refined at idealized positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$) riding on the C atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}$ (methyl C). Methyl H atoms were allowed to rotate but not to tip. The title compound crystallizes in the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$; however, in the absence of significant anomalous scattering effects, the Flack (1983) parameter is essentially meaningless. Accordingly, Friedel pairs were merged.

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

DD is indebted to Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for generous support

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2002). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Döpp, D. (2000). Organic, Physical and Materials Photochemistry (Molecular and Supramolecular Photochemistry, Vol. 6), edited by V. Ramamurthy \& K. S. Schanze, pp. 101-148. New York: Marcel Dekker.

Döpp, D., Memarian, H. R., Krüger, C. \& Raabe, E. (1989). Chem. Ber. 122, 585-588.
Döpp, D. \& Mlinaric, B. (1994a). ACH - Models in Chemistry, 131, 377-381.
Döpp, D. \& Mlinaric, B. (1994b). Bull. Soc. Chim. Belges, 103, 449-452.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kruse, C. (2001). Doctoral thesis, Duisburg University, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pies, M. (1988). Doctoral thesis, Duisburg University, Germany
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

